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4. GENERATING FUNCTIONS

To read:
[3] Chapters 12.1, 12.2.

4.1. Combinatorial applications of polynomials.

Ezxample. How many ways are there to pay the amount of 21 francs with 6 one-francs coins, 5
two-francs coins, and 4 five-francs coins? The requited number is in fact the number of solutions
of the equation

(2) x1 + w9 + w3 = 21,

with z; € {0,1,2,3,4,5,6}, 22 € {0,2,4,6,10}, and x5 € {0,5,10,15,20}. In order to compute
this, we associate to each variable x; a polynomial p; as follows:

pi(z)=1+z+2>+ 23+ 2% +2° 4+ 25,

pa(x) =14+ 22 + 2 + 2% + 2% + 219,

p3(x) =1+ 2° + 210 4 21 4 22,
The number of solutions of equation (2) above will be the cofficient of 22! in the product
pr(z)p2(z)ps(z).

Exercise 1. A box contains 30 red, 40 blue, and 50 white balls; balls of the same color are
indistinguishable. How many ways are there of selecting a collection of 70 balls from the box?

4.2. Multinomial theorem.

Theorem 4.1. (Multinomial theorem). The following holds:
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4.3. Calculation with power series.

Definition 4.2. Let (ag,a1,...) be a sequence of real numbers. Then, its generating function
a(x) is

a(x) = ag + arx + agr* + .. ..

Theorem 4.3. Let ag,ay, ... be a sequence of real numbers. If |ay| < c¥ for every k, where c is
a positive real constant, then the series

24 ...

ap + a1xr + asx
is convergent for all x with |z| < 1.

Proof. Since |ay| < c* for ever k, we have
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Furthermore |z| < 1, therefore |cz| < 1 for every k. Next we show 14+ z + 22+ 2% +... = -1

forx € (=1,1): Let s =1+ a+22+ 23+ ... +2"! then s = 2 + 22 + 2% + ... + 7" and
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therefore s —xs =1 —z™. Thus s = for x £ 1. If |z| < 1 the series converges as n goes to

infinity. Therefore, we have

oo
1
l+z+a224+22+... = ak = for |x| < 1.
) o= forlal
k=0
Since |cx| < 1, we get 3222 |cx|® = 1_10:6'. We have shown that > 7o, axz® is absolutely
convergent, hence it is convergent. [

4.4. Examples of generating functions. Consider the following two examples.
Example 1. Consider the sequence a, =n + 1, n € Z>p. Then the generating function is

d d 1 1
=1 24 =—0 24 )= — = — .
A(x) + 2z + 327 + dx( +z+z=+...) o (1_x) TESE

Example 2. Consider the sequence b, = (n+1)?, n € Z>o. Arguing in a similar way, one gets
that the generating function is B(x) = d%A(I) — A(x).

Exercise 2. What is the generating function of the sequence (ag,a1,...) with a; = 2Lk/2]7

Theorem 4.4. (Generalized binomial theorem). For every r € R and every integer n > 0, let

<r>:r(r—1)---(r—n—l—1)

n n!

r T r
1 "= 24 ...
(1+x) (O>+<1>x—l—<2)x +
for every x with |z| < 1.

Proof. Let f(z) = (1 + z)", then f(0) = r(r — 1)(r —2)---(r —n + 1). Since (}) =

Then, the following holds:

T(T_l)(T_i)!m(T_nH), we have (Z;) = %. For a series a(x) = ag+a1x+asx?+. .. the element a,,
is uniquely determined by a,, = atl(!o). Therefore (14 z)" = (6) + (;):p + (g) 24+ (;) "+
Next we have to show that the series converges for |z| < 1: The series > 2 (;) x™ converges
if
T xn—!—l
lim % <1
This is the case if
) n+1
lim x| < 1.
n—-oo|n—r

which holds for |z| < 1. O
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